

How far from the central engine are the GRBs produced?

Donggeun Tak

With

Z. Lucas Uhm, Bing Zhang, Judith Racusin, Daniel Kocevski, Sylvain Guiriec, and Julie McEnery

Unsolved question in GRB physics

Where is (are) the dissipation radius (radii)?

$$r \sim 2c \,\Gamma^2 \,t_{\rm obs}$$

High-latitude emission (HLE)

- Gamma-ray bursts (GRBs) are attributed to collimated relativistic jets.
 - The geometry of the outgoing shell plays an important role in forming the observed temporal and spectral shapes.

- The signature of HLE has not been clearly identified previously in the prompt phase of GRBs.
 - Complicated temporal features (e.g., overlap of pulses)
 - Multiple spectral components (e.g., thermal and non-thermal)
- The HLE theory expects the relation between F_{v, Ep} and Ep,

$$F_{\nu,E_p} \propto E_p^2$$

GBM sample

- We select a sample of bright broad-pulses of Fermi-GBM GRBs from the years 2008 – 2017.
- Among 2157 GRBs, we choose bright GRBs with fluence and peak flux cuts.
 - $log_{10}(Fluence) \ge -4.6$ (Fluence ≥ 2.5 x 10⁻⁵ erg cm⁻²)
 - $log_{10}(Peak flux) \ge -5.75$ (Peak flux ≥ 1.8 x 10⁻⁵ erg cm⁻²s⁻¹)

Our sample consists of 175 GRBs (~ 8.1 %).

Temporal criteria

- To minimize fluctuations from the background and overlap of pulses, we impose five criteria.
 - The targeted pulse should contain 90% of the GRB fluence.

Bright pulse

- The decaying phase time interval (T_{decay}) should be longer than the rising phase time interval (T_{rise}).

FRED pulse

Temporal criteria

- The number of bumps (N_{bumps}) should be zero during the decaying phase.
- If a bump exists, the total duration of the bump (T_{bump}) should be shorter than 1/4 of the decaying phase time.

Clean pulse

The pulse should not overlap any nearby pulses.

Isolated pulse

Temporal criteria

Examples of "Good" cases

Time-resolved spectral analysis

- Sample size: 32 GRBs
- GBM dataset: use Nals + BGOs (8 keV to 40 MeV)
 - listed in "Scat Detector Mask" (GBM catalog)
- Spectral analysis tools
 - rmfit: background estimation
 - polynomial fit for time intervals before and after the targeted pulse.
 - Xspec: spectral fitting
 - Test a simple power law (PL), a cutoff power law, and the Band function.
 - The best-fit is determined by comparing PG-stat and dof.
- The decaying phase of a broad-pulse is divided into logarithmic equal time bins.

Spectral analysis result

Test the HLE relation

• We test the existence of the HLE evidence by fitting the HLE relation with χ^2 for all possible combination of data points.

$$F_{\nu,E_p} \propto E_p^2$$

- We use at least 4 points.
- For the combination of data points with χ_v^2 < 2, we fit the HLE relation again with letting the exponent free.

$$F_{\nu,E_p} \propto E_p^{\delta}$$

- If the HLE expected index is within 1 σ (δ 2 < σ_{δ}), we conclude that a pulse shows the HLE signature.
- The HLE signature is found in 18 broad pulses.

Result

- The distribution of δ values from 18 pulses is well-described by a Gaussian function.
 - Median: 2.04 +0.16 -0.16
 - Width: 0.42 +0.25 -0.16

Other HLE relations

 Many pulses, which show the HLE signature, satisfy other HLE relations,

Eighth International Fermi Symposium

Interesting case

Three cases showing a slope with index of 0.7.

This value is equivalent to 1.7 in the equation,

$$\nu F_{\nu,E_p} \propto E_p^{1.7}$$

which is consistent with other observational results. (e.g., Borgonovo & Ryde, 2001; Shenoy et al., 2013)

This slope may result from a different physical origin.

Conclusion

- We analyzed GBM GRBs from the years 2008-2017 (2157).
 - Fluence and peak flux cuts
 - Temporal criteria
- Among 32 broad pulses in 32 GRBs, 18 pulses shows the signature of HLE in the decaying phase.
 - δ is distributed as a Gaussian function with median and width of 2.04 and 0.42, respectively.
- This implies that the gamma-ray emitting region of those GRBs with the HLE signature is located at ~ 10¹⁶ cm from the central engine.